فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    9
تعامل: 
  • بازدید: 

    55
  • دانلود: 

    0
چکیده: 

The Internet of Things (IoT) is a concept by which objects find identity and can communicate with each other in a network. One of the applications of the IoT is in the field of medicine, which is called the Internet of Medical Things (IoMT). Acute Lymphocytic Leukemia (ALL) is a type of cancer categorized as a hematic disease. It usually begins in the bone marrow due to the overproduction of immature White Blood Cells (WBCs or leukocytes). Since it has a High rate of spread to other body organs, it is a fatal disease if not diagnosed and treated early. Therefore, for identifying cancerous (ALL) cells in medical diagnostic laboratories, blood, as well as bone marrow smears, are taken by pathologists. However, manual examinations face limitations due to human error risk and time-consuming procedures. So, to tackle the mentioned issues, methods based on Artificial Intelligence (AI), capable of identifying cancer from non-cancer tissue, seem vital. Deep Neural Networks (DNNs) are the most efficient machine learning (ML) methods. These techniques employ multiple layers to extract Higher-level features from the raw input. In this paper, a Convolutional Neural Network (CNN) is applied along with a new type of classifier, Higher Order Singular Value Decomposition (HOSVD), to categorize ALL and normal (healthy) cells from microscopic blood images. We employed the model on IoMT structure to identify leukemia quickly and safely. With the help of this new leukemia classification framework, patients and clinicians can have real-time communication. The model was implemented on the Acute Lymphoblastic Leukemia Image Database (ALL-IDB2) and achieved an average accuracy of %98. 88 in the test step.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 55

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

RASHIDINIA J.

اطلاعات دوره: 
  • سال: 

    2006
  • دوره: 

    17
  • شماره: 

    2
  • صفحات: 

    15-21
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    285
  • دانلود: 

    0
چکیده: 

Variable mesh finite difference method of fifth Order have been derived for solution of Singular two point boundary Value problem, which reduces to the method of Order six, for uniform mesh case. These methods are self starting and are exact for u=r-1. The convergence of the sixth Order method is discussed. The absolute error, for solution of four problems, two linear and two nonlinear are listed to show the accurate and effectiveness of the present method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 285

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

CHANDRA D.V.S.

اطلاعات دوره: 
  • سال: 

    2002
  • دوره: 

    3
  • شماره: 

    45
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    155
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 155

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1391
  • دوره: 

    19
تعامل: 
  • بازدید: 

    321
  • دانلود: 

    130
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 321

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 130
نویسندگان: 

KASANA G. | SINGH K. | SINGH BHATIA S.

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    28
  • شماره: 

    12 (TRANSACTIONS C: ASPECTS)
  • صفحات: 

    1720-1727
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    332
  • دانلود: 

    0
چکیده: 

In this paper, a steganography technique for JPEG 2000 compressed images using Singular Value Decomposition (SVD) in wavelet transform domain is proposed. In this technique, discrete wavelet transform (DWT) is applied on the cover image to get wavelet coefficients and Singular Value Decomposition is applied on these wavelet coefficients to get their Singular Values. Secret data bits are embedded into these Singular Values using scaling factor. Different compression rates are also considered for JPEG 2000 images after embedding the secret images. Genetic algorithm (GA) is used to optimize the Value of scaling factor (SF). Maximum capacity of the proposed technique is 25% of cover image size and maximum peak signal to noise ratio (PSNR) Values between cover and its stego image is more than the PSNR of existing techniques. Embedding capacity of proposed technique is also Higher than the embedding capacity of existing techniques. Also, PSNR between secret image and extracted image is High and hence the visual quality of the extracted secret image is good enough to the human visual system. Steg analysis tests are performed on the stego images to show imperceptibility of proposed technique.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 332

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

KAVEH A. | MALLAKI M.S. | RAHAMI H.

اطلاعات دوره: 
  • سال: 

    2015
  • دوره: 

    16
  • شماره: 

    4
  • صفحات: 

    493-504
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    438
  • دانلود: 

    0
چکیده: 

Different methods are used for the formation of the null basis matrix of a structure followed by calculating the element forces when the force method of structural analysis is utilized. Singular Value Decomposition (SVD) method is one of the algebraic methods in force method that uses equilibrium matrix in its computation of finding element forces. By increasing the dimensions of the equilibrium matrix in large scale structures, the time needed for making orthogonal matrices grows. In recent decades many researchers have worked on block-diagonalization of structural matrices such as stiffness matrix in symmetric structures to reduce the computational time and simplify the equations. Block-diagonalization of equilibrium matrix can also reduce the computational time in algebraic force methods. In this paper block-diagonalization of equilibrium matrices of circulant structure is performed using Kronocker product and SVD method is utilized to calculate the block-diagonalization null basis matrix. Finally the results are compared to those of the method without block-diagonalization and other algebraic methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 438

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

JAFARI FATEMEH | RASHIDY KANAN HAMIDREZA

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    9
  • شماره: 

    1
  • صفحات: 

    51-60
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    301
  • دانلود: 

    0
چکیده: 

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance by using disguise accessories, and the second one is when gallery images are limited for recognition. LPQ has been used for extraction of the statistical feature of the phase in windows with different sizes for each pixel of the image. SVD is used to cope with the challenge of the gallery images limitation and also with the help of original images extracted from that, every single image turns to three renovated images. In this study, disguise is intended as a blur in the image and Local phase quantization method is robust against the disguised mode, due to the use of the statistical feature of the Fourier transform phase. Also the use of different-sized window instead of fixed window in feature extraction stage, the performance of the proposed method has increased. The distance of images from each other is computed by using Manhattan and Euclidean distance for recognition in the proposed method. The Performance of the proposed algorithm has been evaluated by using three series of experiments on two real and synthesized databases. The first test has been performed by evaluating all the possible combinations of the different sized windows created in the feature extraction stage, and the second experiment has been done by reducing the number of gallery images and then the third one has been carried out in different disguise. In all cases, the proposed method is competitive with to several existing well-known algorithms and when there is only an image of the person it even outperforms them.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 301

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    10
  • شماره: 

    38
  • صفحات: 

    173-199
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    166
  • دانلود: 

    73
چکیده: 

سیستم های توصیه گر یکی از ضروری ترین ابزارهای هوشمندسازی تجارت الکترونیک است. این سیستم ها با انواع مختلف روش های فیلتر­, کردن داده ها و داده کاوی، قادر به انتخاب و ارایه بهترین پیشنهادات از بین انبوه موارد قابل انتخاب برای مشتریان هستند. در بین روش های متنوع سیستم های توصیه گر، فیلترهای اشتراکی پرکاربردترین روش برای ارایه پیشنهادات است. فیلترهای اشتراکی دامنه وسیعی از الگوریتم ها را شامل می شود و در این بین، روش تجزیه ماتریس به مقادیر منفرد یکی از مدل های پیشرفته در فیلتر اشتراکی است. در این مقاله به ارایه مدلی بهینه شده از سیستم توصیه گر فیلم مبتنی بر روش تجزیه مقادیر منفرد پرداخته شده که ضمن کاهش ابعاد ماتریس و کاهش حجم محاسبات و حافظه، با روش تکرار جاگذاری، دارای دقت مناسب نسبت به روش تجزیه ماتریس به مقادیر منفرد ساده و سایر روش های دیگر است. برای این پژوهش از مجموعه دیتاست های 100 هزار امتیازی مووی لنز و از برنامه نویسی پایتون استفاده شده است. ارزیابی میزان خطا با روش های جذر میانگین مربعات خطا و میانگین قدر مطلق خطا، نشان از بهبود مناسب نسبت به روش های مشابه در مراجع دیگر دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 166

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 73 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Lone M.S. | Khan T.H.

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    10
  • شماره: 

    1
  • صفحات: 

    43-58
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    104
  • دانلود: 

    0
چکیده: 

In this paper we characterize di erent classes of matrices in Minkowski space M by generalizing the Singular Value Decomposition in terms of m-projectors. Furthermore, we establish results on the relation between the range spaces and rank of the range disjoint matrices by utilizing the Singular Value Decomposition obtained in terms of m-projectors. Since there is no result on the formulation of Minkowski inverse of the sum of two matrices, we have established an expression for the Minkowski inverse of the sum of a range disjoint matrix with its Minkowski adjoint, which will ease to formulate an expression for the Minkowski inverse of the sum of two matrices in general case.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 104

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2018
  • دوره: 

    15
  • شماره: 

    4
  • صفحات: 

    206-214
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    200
  • دانلود: 

    0
چکیده: 

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by High levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and Singular Value Decomposition (SVD) was developed to analyze the raw data of visual evoked potentials and extract time-locked signals with external visual stimulation. A bio-amplifier (iERG 100P) and data acquisition system (OMB-DAQ-3000) were utilized to record EEG raw data from the human scalp. MATLAB Data Acquisition Toolbox, Wavelet Toolbox, and Simulink model were employed to analyze EEG signals and extract VEP responses. Results: Results were verified in Simulink environment for the real recorded EEG data. The proposed model allowed precise Decomposition and classification of VEP signals through the combined operation of DWT and SVD. DWT was successfully used for the Decomposition of VEP signals to different frequencies followed by SVD for feature extraction and classification. Conclusion: The visual and quantitative results indicated that the impact of the proposed technique of combining DWT and SVD was promising. Combining the two techniques led to a two-fold increase in the impact of peak signal to noise ratio of all the tested signals compared to using each technique individually.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 200

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button